Exogenous reelin prevents granule cell dispersion in experimental epilepsy.

نویسندگان

  • Martin C Müller
  • Matthias Osswald
  • Stefanie Tinnes
  • Ute Häussler
  • Anne Jacobi
  • Eckart Förster
  • Michael Frotscher
  • Carola A Haas
چکیده

Temporal lobe epilepsy (TLE) is often accompanied by granule cell dispersion (GCD), a migration defect of granule cells in the dentate gyrus. We have previously shown that a decrease in the expression of reelin, an extracellular matrix protein important for neuronal positioning, is associated with the development of GCD in TLE patients. Here, we used unilateral intrahippocampal injection of kainate (KA) in adult mice which is also associated with GCD formation and a decrease of reelin expression. In this mouse epilepsy model we aimed to prevent GCD development by the application of exogenous reelin. As a prerequisite we analyzed whether the reelin signaling transduction cascade was preserved in the KA-injected hippocampus. Using in situ hybridization and Western blot analysis we found that the expression of the reelin signaling components, apolipoprotein E receptor 2, the very-low-density lipoprotein receptor and the intracellular adaptor protein disabled 1, was maintained in dentate granule cells after KA injection. Next, recombinant reelin was infused into the KA-injected hippocampus by osmotic minipumps over a period of 2 weeks. Quantitative analysis of granule cell layer width revealed a significant reduction of GCD in reelin-treated, but not in saline-infused animals when compared to KA injection alone. Our findings highlight the crucial role of reelin for the maintenance of granule cell lamination in the dentate gyrus of adult mice and show that a reelin deficiency is causally involved in GCD development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epileptiform activity interferes with proteolytic processing of Reelin required for dentate granule cell positioning.

The extracellular matrix protein Reelin is an essential regulator of neuronal migration and lamination in the developing and mature brain. Lack of Reelin causes severe disturbances in cerebral layering, such as the reeler phenotype and granule cell dispersion in temporal lobe epilepsy. Reelin is synthesized and secreted by Cajal-Retzius cells and GABAergic interneurons, and its function depends...

متن کامل

Reelin Signalling Pathway and Mesial Temporal Lobe Epilepsy: A Causative Link?

Mesial temporal lobe epilepsy (MTLE) is the most frequent form of partial epilepsy. Granule cell dispersion, resulting from aberrant neuronal migration in the hippocampus, is pathognomonic of MTLE. Reelin, a secreted neurodevelopmental glycoprotein has a crucial role in controlling the radial migration of neurons. Several animal studies have implicated Reelin in the MTLE pathogenesis. The aim o...

متن کامل

Granule cell dispersion in temporal lobe epilepsy is associated with changes in dendritic orientation and spine distribution.

Granule cell dispersion is a characteristic feature of Ammon's horn sclerosis in temporal lobe epilepsy. It was recently shown that granule cell dispersion is associated with decreased expression of the extracellular matrix protein Reelin. Reelin controls neuronal lamination and the differentiation of dendrites and spines. Here, we studied dendritic orientation and the distribution of dendritic...

متن کامل

Epilepsy-Associated Reelin Dysfunction Induces Granule Cell Dispersion in the Dentate Gyrus

Ammon’s horn sclerosis (AHS) is a hallmark of temporal lobe epilepsy. AHS is characterized by neuronal loss in hippocampal regions CA3 and CA1 and in the hilus of the dentate gyrus, and by granule cell dispersion (GCD). The term sclerosis describes a glial hypertrophy accompanying the neuronal loss. The neuron loss is likely to represent excitotoxic cell death associated with increased calcium ...

متن کامل

Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy.

Mesial temporal sclerosis (MTS) is the most common lesion in chronic, intractable temporal lobe epilepsies (TLE) and characterized by segmental neuronal cell loss in major hippocampal segments. Another histopathological hallmark includes granule cell dispersion (GCD), an architectural disturbance of the dentate gyrus encountered in approximately 50% of patients with mesial temporal sclerosis. R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 216 2  شماره 

صفحات  -

تاریخ انتشار 2009